Sunday, June 2, 2024

Functional Collections in Programming Languages

As I was updating the documentation for FSet, my functional collections library for Common Lisp, I wondered about the history of functional collections in programming languages.  I have found a couple of interesting early examples, but before I present those, I want to address this question: exactly what does it mean for a collection type (or indeed, any type) to be "functional" in an imperative language with assignment?

When I speak of "functional" types in imperative languages, I mean more specifically types with value semantics as opposed to reference semantics.  The distinction is more subtle than that between mutable and immutable types, which it is often conflated with.  Let's consider for a moment a simple type that we all understand: integers in C.  For example:

int a = 2;
int b = a;
++a;

After execution of these statements, a will be 3 and b will be 2.  Note in particular that the assignment of a to b is a value assignment: it copies the value of a into b; it does not make b an alias of a.  If it had made b an alias of a, then b would also have been 3 afterwards.

For contrast, consider this example in Java:

int[] a = {15, 37};
int[] b = a;
a[0] = 42;

After this, both a and b will contain {42, 37}.  Here the assignment is a reference assignment: b doesn't just wind up with the same array value as a; instead, it gets aliased to a, so that changes made to either one are reflected in the other.

These observations suggest a definition of the distinction between value semantics and reference semantics: if a type has value semantics, then assignment of it does not cause aliasing, while with reference semantics, assignment does cause aliasing.

Now let's look at a C++ example:

std::string a = "foo";
std::string b = a;
a.insert(1, "x");

Particularly if you don't know C++, I invite you to puzzle over this for a moment.  What is the value of b?  In fact, it is "foo"; the assignment is value assignment, implemented by copying the contents of the string, so the a.insert operation affects only a.  Strings in C++ have value semantics, as indeed do the STL collection types (vector etc.).  Of course, in C++, you can create a reference or pointer to any type, so you can always get reference semantics when you want it, even for built-in types such as integers.

So now I have a couple of questions for you.  First, are C++ strings mutable?  Given that they have operations like insert, one would be inclined to call them mutable, don't you think?  Let's say that they are.  Okay, then are C/C++ integers also mutable?  We don't usually think of integers as being mutable; we usually think of an operation like ++a as assigning a new value to a, not as incrementing a mutable integer object.  But as we see here, integers and strings have the same behavior vis-a-vis assignment and modification; if we consider strings to be mutable, seems like we have to consider integers mutable as well.

But my purpose isn't really to get you to call integers mutable.  My point is, rather, that the mutable/immutable distinction doesn't capture everything that's going on here.  The more useful distinction is between value semantics and reference semantics.  When I speak of "functional collections", I mean that they have value semantics, not necessarily that they have nothing that looks like a mutating operation.

So the question I wondered about was, what were the first programming languages to provide collections with value semantics?

A case can be made that Lisp was the first, in 1958.  Although Lisp lists are mutable, they are usually treated as immutable once fully constructed.  For example, a function constructing and returning a list might call nreverse on it just before returning it, to destructively reverse it (a common idiom, because constructing a list using cons starts at the end); but usually, the caller of such a function, having received the returned list, would not subsequently mutate it.  Certainly there are and have always been exceptions, but my impression is that, even in Lisp's early years, significant bodies of code were written in which the vast majority of lists were treated functionally (once fully constructed).

But the first language in which collections were treated functionally by definition, rather than by usual convention, appears to have been APL in 1966.  Interestingly, given the very great difference the choice of value or reference semantics makes to the way in which one writes programs in a language, I can't find a clear statement in the APL manual that I'm looking at as to which semantics APL uses for its arrays.  It seems to be something that people expect to go without saying (one reason I'm writing about it).  But I downloaded and compiled GNU APL and tried it out, and, sure enough, it uses value semantics (the left arrow is the assignment operator; user input is in bold):

V←1 2 3 4
V
1 2 3 4
W←V
V[2]←7
V
1 7 3 4
W
1 2 3 4

Another early value-semantics language was SETL.  From Robert B. K. Dewar's The SETL Programming Language (1979):

One important point is that SETL treats tuples as values when it comes to assignments.  Consider the following sections of code:
abc := 12;
cde := abc;
abc := abc + 2; $ cde
still = 12

abc := [1,2,3];
cde := abc;
abc(2) := 0; $ cde
still = [1,2,3]

In SETL the two sequences have similar effects.  If you expected cde to change in the second
sequence, then study it carefully.  If not, then you have the correct idea already.

Here, just as I have done above, Dewar is demonstrating how the value semantics of SETL tuples is like that of integers.

SETL strongly influenced a little-known, proprietary language called Refine, which I worked in from 1987 to 2003.  Refine was originally developed at Kestrel Institute; it had functional collections and was implemented on top of Common Lisp.  It was my experience with Refine that motivated me to write FSet.

Other languages with functional collections appeared in the 1980s and 1990s, including the ML family (primarily Standard ML and OCaml) and Haskell.  No doubt there were others of which I am not aware.  But the language that has probably done the most to popularize functional collections is Rich Hickey's Clojure.

All of which brings me back to FSet.  FSet, of course, has value semantics:

FSET-USER> (isetq x (map ('a (seq 47 33)) ('b (seq 17 3 99))))
#{| (A #[ 47 33 ]) (B #[ 17 3 99 ]) |} ;
a map whose range values are seqs
FSET-USER> (isetq y x)
#{| (A #[ 47 33 ]) (B #[ 17 3 99 ]) |}
FSET-USER> (setf (@ (@ x 'a) 1) 1)     ;
sets element 1 of the seq for 'a
1
FSET-USER> x
#{| (A #[ 47 1 ]) (B #[ 17 3 99 ]) |}
FSET-USER> y
#{| (A #[ 47 33 ]) (B #[ 17 3 99 ]) |}

(Here isetq is an "interactive setq" that suppresses undefined-variable warnings some Lisp implementations issue when you interactively set a previously unknown variable.)  You can see that the update to x doesn't change y; but how does FSet manage this?  Common Lisp's setf macro was designed to support such cases.  In the CLHS sec. 5.1.2.2, we see:

A function form can be used as a place [the first operand of setf] if it falls into one of the following categories:
[...]
• A function call form whose first element is the name of any one of the functions in the next figure [which are ldb, mask-field, and getf], provided that the supplied argument to that function is in turn a place form; in this case, the new place has stored back into it the result of applying the supplied "update" function.

So for instance, you can update bitfields of integer variables:

CL-USER> (setq *print-base* 16)  ; hexadecimal output makes this easier to understand
10
CL-USER> (setq x #x1000)
1000
CL-USER> (setf (ldb (byte 8 4) x) #x32)
32
CL-USER> x
1320

Since it's an integer that's being updated here, clearly setf has the ability to handle updates to types with value semantics.  If you're curious how that works, see the CLHS sec. 5.1.1.2.


No comments:

Post a Comment